Study of Parton Distribution Function at LHC

Anirban Saha

Experimental High Energy Physics, TIFR

INDIA-CMS Meeting

July 21, 2007

Outline

- List of the processes which are studied till now to know PDF.
- How the information of PDF is extracted from the experimental data.
- Some general trend of PDF uncertainties.
- How the asymmetry in W rapidity distribution can reduce the uncertainty of PDF.
- Possible sources of background.
- The required event selection criteria to eliminate the background.

Process/ Experiment	Leading order subprocess	Parton behaviour probed
DIS $(\mu N \rightarrow \mu X)$ $F_2^{\mu p}, F_2^{\mu d}, F_2^{\mu n}/F_2^{\mu p}$ (SLAC, BCDMS, NMC, E665)*	$\gamma^* q \to q$	Four structure functions \rightarrow $u + \bar{u}$ $d + \bar{d}$ $\bar{u} + \bar{d}$
DIS $(\nu N \rightarrow \mu X)$ $F_2^{\nu N}, x F_3^{\nu N}$ $(CCFR)^*$	$W^*q \to q'$	$s \text{ (assumed} = \bar{s}),$ but only $\int xg(x,Q_0^2)dx \simeq 0.35$ and $\int (\bar{d} - \bar{u})dx \simeq 0.1$
DIS (small x) F_2^{ep} (H1, ZEUS)*	$\gamma^*(Z^*)q \to q$	$\lambda \ (xar q \sim x^{-\lambda_S}, \ xg \sim x^{-\lambda_g})$
DIS (F _L) NMC, HERA	$\gamma^*g \to q\bar{q}$	g
$\ell N \rightarrow c \bar{c} X$ $F_2^c \; (\text{EMC; H1, ZEUS})^*$	$\gamma^* c \to c$	$c (x \gtrsim 0.01; \ x \lesssim 0.01)$
$ u N ightarrow \mu^+ \mu^- X $ (CCFR)*	$W^*s \to c \\ \hookrightarrow \mu^+$	$s \approx \frac{1}{4}(\bar{u} + \bar{d})$
$pN \rightarrow \gamma X$ (WA70 [*] , UA6, E706,)	$qg \to \gamma q$	$\begin{array}{c} g \mbox{ at } x\simeq 2p_T^\gamma/\sqrt{s} \rightarrow \\ x\approx 0.2-0.6 \end{array}$
$pN \rightarrow \mu^+ \mu^- X$ (E605, E772)*	$q\bar{q} \to \gamma^*$	$\bar{q} = \dots (1-x)^{\eta_S}$
$pp, pn \rightarrow \mu^+ \mu^- X$ (E866, NA51)*	$\begin{array}{c} u\bar{u}, d\bar{d} \rightarrow \gamma^{*} \\ u\bar{d}, d\bar{u} \rightarrow \gamma^{*} \end{array}$	$\bar{u} - \bar{d} (0.04 \lesssim x \lesssim 0.3)$
$ep, en ightarrow e\pi X$ (HERMES)	$\gamma^* q \to q$ with $q = u, d, \bar{u}, \bar{d}$	$\bar{u} - \bar{d} (0.04 \lesssim x \lesssim 0.2)$
$p\bar{p} \rightarrow WX(ZX)$ (UA1, UA2; CDF, D0)	$ud \rightarrow W$	$u, d \text{ at } x \simeq M_W / \sqrt{s} \rightarrow x \approx 0.13; \ 0.05$
$\rightarrow \ell^{\pm} \text{ asym (CDF)}^*$		slope of u/d at $x \approx 0.05 - 0.1$
$p\bar{p} \rightarrow t\bar{t}X$ (CDF, D0)	$q\bar{q},gg\to t\bar{t}$	q, g at $x \gtrsim 2m_t/\sqrt{s} \simeq 0.2$
$p\bar{p} \rightarrow \text{jet} + X$ (CDF D0)	$gg,qg,qq \to 2j$	$q, g \text{ at } x \simeq 2E_T / \sqrt{s} \rightarrow x \simeq 0.05 - 0.5$

Over the measurable rapidity range, |y| < 2.5, x values remain in the range, $5 \times 10^{-4} < x < 5 \times 10^{-2}$. Thus the scattering happens between the sea quarks.

All the hadron-hadron cross sections are dependent of the PDFs. QCD factorization theorem for short distance inclusive processes:

$$d\sigma_X = \sum_{ij} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) d\hat{\sigma}_{ij \to X}$$

where X = W, Z, quarks, jets, Higgs.

The Processes must have well measured final states.

The NLO corrections to σ are known

Provide an important cross-check on the PDFs.

Parametrization of PDFs:

$$\begin{aligned} xu_v &= A_u x^{\eta_1} (1-x)^{\eta_2} (1+\epsilon_u \sqrt{x}+\gamma_u x) \\ xd_v &= A_d x^{\eta_3} (1-x)^{\eta_4} (1+\epsilon_d \sqrt{x}+\gamma_d x) \\ xS &= A_S x^{-\lambda_S} (1-x)^{\eta_S} (1+\epsilon_S \sqrt{x}+\gamma_S x) \\ xg &= A_g x^{-\lambda_g} (1-x)^{\eta_g} (1+\epsilon_g \sqrt{x}+\gamma_g x). \end{aligned}$$

 $\eta_{1,3}, \lambda_{s,g}$ control the low-x shape $\eta_{2,4}, \eta_{s,g}$ control high-x shape ϵ s and γ s control middle-x shape To ensure rise at low-x and $xg(x) \to 0$ as $x \to 1$.

QCD fits:

Parametrize a set of PDFs at a "starting scale" Q_0^2

 Q_0^2 : not too high, to keep as much data as possible (mainly DIS) not too low, to be on perturbative domain.

Typical value of $Q_0^2 \sim 4 GeV^2$

DGLAP equations give $f(x, Q^2)$ at any Q^2 , once $f(x, Q_0^2)$ is known.

Impose sum and counting rules

The general trend of PDF uncertainties is:

- The u quark is better known than the d quark.
- The valence quarks are much better known than the gluon at high-x.
- The sea and the gluon are well known at low-x.
- The sea and the gluon are poorly konown at high-x, but the valence quarks are more important in this region.

At the LHC we will have dominantly sea-sea parton interactions at low-x.

PDF distributions at $Q^2 = 10,000 \text{ GeV}^2$.

At $Q^2 \sim M_z^2$ the sea is driven by the gluon, which is less precisely known

e^- , e^+ rapidity spectra for the lepton from the W decay at the generator level.

using CTEQ6.1 ZEUS-S MRST2001 PDF sets with full uncertainties.

Study of the effect of including LHC W rapidity distributions in global PDF fits:

• Generate data with CTEQ6.1 PDF, pass through the detector simulation and then include this pseudo-data in the global ZEUS PDF fit. Central value of the prediction shifts and uncertainty at central rapidity is reduced from 6% to 4.5%.

Improvement in the lox-x gluon shape parameter λ_g , $xg(x) \sim x^{-\lambda_g}$

 $\lambda_g=0.199\pm0.046,$ before the input of the LHC pseudo-data, $\lambda_g=0.181\pm0.030,\, {\rm after \ the \ input}.$

Background studies:

W is identified in the decay channel $W \to e\nu_e$

Several processes can be misidentified as $W \to e\nu_e$

- 1. $W \to \tau \nu_{\tau}$, with τ decaying to the electron channel
- 2. $Z \to \tau^+ \tau^-$, at least one τ decaying to the electron channel
- 3. $Z \to e^+e^-$ with one electron identified

We apply the event selection criteria designed to eliminate the background.

The event selection criteria are:

- Pseudorapidity, |y| < 2.4, to avoid bias at the edge of the measurable rapidity range
- $p_{te} > 25 GeV$, high p_t is necessary for electron triggering
- Missing $E_t > 25 GeV$, the ν_e in a signal event will have a correspondingly large missing E_t
- No reconstructed jets in the event with $p_t > 30 GeV$, to discriminate against QCD background